Spatio-temporal Distribution of Plankton in Lake Mainit, Northeastern Mindanao, Philippines

International Journal of Science and Management Studies (IJSMS)
© 2024 by IJSMS Journal
Volume-7 Issue-1
Year of Publication : 2024
Authors : Sonnie A. Vedra, Elnor C. Roa, Jeanette J. Samson, Ruth D. Gaid, Rey L. Roa, Rustan C. Eballe, Geralyn D. Dela Peña, Marissa Y. Salarda, Michael James O. Baclayon, Melchor R. Rigor
DOI: 10.51386/25815946/ijsms-v7i1p118
MLA Style: Sonnie A. Vedra, Elnor C. Roa, Jeanette J. Samson, Ruth D. Gaid, Rey L. Roa, Rustan C. Eballe, Geralyn D. Dela Peña, Marissa Y. Salarda, Michael James O. Baclayon, Melchor R. Rigor "Spatio-temporal Distribution of Plankton in Lake Mainit, Northeastern Mindanao, Philippines" International Journal of Science and Management Studies (IJSMS) V7.I1 (2024): 120-126.

APA Style: Sonnie A. Vedra, Elnor C. Roa, Jeanette J. Samson, Ruth D. Gaid, Rey L. Roa, Rustan C. Eballe, Geralyn D. Dela Peña, Marissa Y. Salarda, Michael James O. Baclayon, Melchor R. Rigor, Spatio-temporal Distribution of Plankton in Lake Mainit, Northeastern Mindanao, Philippines, International Journal of Science and Management Studies (IJSMS), v7(i1), 120-126.
Plankton were surveyed to describe their mean distribution in Lake Mainit. Standard means of specimen collection were observed. Forty-eighttaxa of phytoplankton belonging to Chlorophyta, Bacillariophyta, Cyanophyta and Euglenophyta, and sixtaxa of zooplankton such Copepoda and Rotifera were identified. Highest concentration of phytoplankton in the Lake was on Januaryat 22,325.00 cells/L, while among zooplankton at 109.00 ind/L occurred between February to March. Generally, plankton counts decreased upon approaching warmer months starting February to April. Further relevant study is suggested to understand the dynamics of plankton as a function of complex environmental interactions in the Lake.
Keywords: Tropical Lake, Plankton Diversity, Freshwater Ecosystem, Lake Mainit.
[1] Abonyi A., Ács É., Hidas A., Grigorszky I., Várbíró G., Borics G., Kiss KT.(2018). Functional diversity of phytoplankton highlights long-term gradual regime shift in the middle section of the Danube River due to global warming, human impacts and oligotrophication. Freshwater Biology63:456–472. https://doi.org/10.1111/fwb.13084.
[2] Ai, H. Zhang, K., Sun, J., Zhang, H. (2003). Short-term Lake Erie algal bloom prediction by classification and regression models, Water Research232, (119710) 10.1016/j.watres.2023.119710.
[3] Best, J. (2018). Anthropogenic stresses on the world’s big rivers. Nature Geoscience12(1), 7-21. https://doi.org/10.1038/s41561-018-0262-x.
[4] Cai, W, Xia J, Yang M, Wang W, Dou C, Zeng Z. (2020). Cross-basin analysis of freshwater ecosystem health based on a zooplankton-based index of biotic integrity: models and application. Ecological Indicators 114:106333. https://doi.org/10.1016/j.ecolind.
[5] Cardinale, BJ, Palmer, MA, Collins, SL. (2002). Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415:426–4299. https://doi.org/10.1038/415426a.
[6] Dengg, M., Stirling, C. H., Safi, K., Lehto, N. J., Wood, S. A., Seyitmuhammedov, K., Reid, M. R., & Verburg, P. (2023).
[7] Bioavailable iron concentrations regulate phytoplankton growth and bloom formation in low-nutrient lakes. Science of The Total Environment, 902, 166399. https://doi.org/10.1016/j.scitotenv.2023.166399.
[8] Gao, W., Xiong, F., Lu, Y., Qu, X., Xin, W., & Chen, Y. (2023). Development of a phytoplankton-based index of biotic integrity for ecological health assessment in the Yangtze River. Ecological Processes, 12(1), 1-15. https://doi.org/10.1186/s13717-023-00456-7.
[9] Huang, G, Chen, Y, Wang, X, Hughes, R, Xu, L. (2019). Using multiple indicators to assess spatial and temporal changes in ecological condition of a drinking water reservoir in central China. Annales de Limnologie - International Journal of Limnology55:9. https://doi.org/10.1051/limn/2019009.
[10] Khan, TA. (2003). Limnology of four saline lakes in western Victoria, Australia: II, biological parameters. Limnologica 33:327–339. https://doi.org/10.1016/S0075-9511(03)80027-0.
[11] Li, J., Jiang, X., Jing, Z., Li, G., Chen, Z., Zhou, L., Zhao, C., Liu, J., & Tan, Y. (2017). Spatial and seasonal distributions of bacterioplankton in the Pearl River Estuary: The combined effects of riverine inputs, temperature, and phytoplankton. Marine Pollution Bulletin, 125(1-2), 199-207. https://doi.org/10.1016/j.marpolbul.2017.08.026.
[12] Yang, M, Xia, J., Cai, W., Zhou, Z., Yang, L., Zhu, X., Li, C. (2020). Seasonal and spatial distributions of morpho-functional phytoplankton groups and the role of environmental factors in a subtropical river-type reservoir. Water Science and Technology82 (11): 2316–2330.
[13] Padilla, R.F.Q., Crisologo, E.S. Romarate II, R.A. and Vedra. S. A. (2015). Analysis of vegetation degradation using GIS and remote sensing at Lake Mainit watershed, Mindanao, Philippines. Advances in Environmental Sciences Bioflux. 7(3):409-414.
[14] Romo, S., & Villena, M. (2005). Phytoplankton strategies and diversity under different nutrient levels and planktivorous fish densities in a shallow Mediterranean lake. Journal of Plankton Research, 27(12), 1273-1286. https://doi.org/10.1093/plankt/fbi093.
[15] Ruaro R, Gubiani ÉA, Hughes RM, Mormul RP (2020) Global trends and challenges in multimetric indices of biological condition. Ecological Indicators 110:105862. https://doi.org/10.1016/j.ecolind.2019.105862.
[16] Thomas, M. K., Fontana, S., Reyes, M., Kehoe, M., & Pomati, F. (2018). The predictability of a lake phytoplankton community, over time-scales of hours to years. Ecology Letters, 21(5), 619-628. https://doi.org/10.1111/ele.12927.
[17] Tickner D, Opperman JJ, Abell R, Acreman M, Arthington AH, Bunn SE, Cooke SJ, Dalton J, Darwall W, Edwards G, Harrison I, Hughes K, Jones T, Leclère D, Lynch AJ, Leonard P, McClain ME, Muruven D, Olden JD, Ormerod SJ, Robinson J, Tharme RE, Thieme M, Tockner K, Mark W, Young L. (2020). Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. Bioscience 70:330–342. https://doi.org/10.1093/biosci/biaa002.
[18] Uy, K.P.L.E., Jolapong, J.D. Demecillo, M.M. Coronado, W.A. Trinidad, R.B.and Vedra. S.A. (2019). Gut content analysis of pijanga (Glossogobius giuris) inhabiting the Lake Mainit of Northeastern Mindanao, Philippines. World Journal of Environmental and Agricultural Sciences. 3(1): 1-8.
[19] Vedra, S.A. Roa, E.C. Salarda, M.Y. Gaid, R.D. Roa, R.L. Samson, J.J. Eballe, R.C. dela Peña, G.D. Baclayon, M.J.O. and Rigor, M.R. (2019). Reproductive potential of Glossogobius giuris(Hamilton 1882) inhabiting the pelagic waters of Lake Mainit, Northeastern Mindanao, Philippines.World Journal of Environmental and Agricultural Sciences. 4(1): 1-9.
[20] Villena, M. J. and Romo, S. (2003). Phytoplankton changes in a shallow Mediterranean lake (Albufera of Valencia, Spain) after sewage diversion. Hydrobiologia. 506–509, 281–287.
[21] Wang S, Zhang Q, Yang T, Zhang L, Li X, Chen J. (2019). River health assessment: proposing a comprehensive model based on physical habitat, chemical condition and biotic structure. Ecological Indicators 103:446–460. https://doi.org/10.1016/j.ecolind.2019.04.013.
[22] Wu, Z., Cai, Y., Liu, X., Xu, C. P., Chen, Y., & Zhang, L. (2013). Temporal and spatial variability of phytoplankton in Lake Poyang: The largest freshwater lake in China. Journal of Great Lakes Research, 39(3), 476-483. https://doi.org/10.1016/j.jglr.2013.06.008.
[23] Wu, Z., Wang, F., Wang, X., Li, K., & Zhang, L. (2023). Water quality assessment using phytoplankton functional groups in the middle-lower Changjiang River, China. Limnologica, 99, 126056. https://doi.org/10.1016/j.limno.2023.126056.
[24] Yang Z, Zhu D, Zhu Q, Hu L, Wan C, Zhao N, Liu H, Chen X. (2020). Development of new fish-based indices of biotic integrity for estimating the effects of cascade reservoirs on fish assemblages in the upper Yangtze River, China. Ecological Indicators 119:106860. https://doi.org/10.1016/j.ecolind.2020.106860.
[25] Zhang H, Zong R, He H, Liu K, Yan M, Miao Y, Ma B, Huang X. (2021). Biogeographic distribution patterns of algal community in different urban lakes in China: insights into the dynamics and co-existence. Journal of Environmental Science 100:216–227. https://doi.org/10.1016/j.jes.2020.07.024.